Reg. No.

# Question Paper Code : 51445

### **B.E/B.Tech. DEGREE EXAMINATION, MAY/JUNE 2016**

## Third Semester

### **Electronics and Communication Engineering**

## EC 2204/EC 35/EC 1202 A/10144 EC 305/080290015 - SIGNALS AND SYSTEMS

#### (Common to Biomedical Engineering)

(Regulations 2008/2010)

## **Time : Three Hours**

## Maximum : 100 Marks

## Answer ALL questions.

## $PART - A (10 \times 2 = 20 Marks)$

1. Check whether the discrete time signal Sin3n is periodic.

2. Define a random signal.

3. What is the relationship between Fourier transform and Laplace transform?

4. State Drichlet's conditions.

5. Determine the Laplace transform of the signal  $\delta(t-5)$  and u(t-5).

6. Determine the convolution of the signals  $x[n] = \{2, -1, 3, 2\}$  and  $h[n] = \{1, -1, 1, 1\}$ .

7. What is aliasing ?

8. Define unilateral and bilateral Z transform.

9. Convolve the following two sequences :

 $x(n) = \{1, 1, 1, 1\}$ 

h(n) = (3, 2)

51445

10. A causal LTI system has impulse response h(n), for which the z-transform is  $H(z) = \frac{1 + z^{-1}}{(1 - 0.5 z^{-1}) (1 + 0.25 z^{-1})}$ Is the system stable ? Explain.

## $PART - B (5 \times 16 = 80 Marks)$

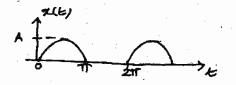
(a) Determine whether the systems described by the following input-output equations are linear, dynamic, casual and time variant. (16)

- (i)  $y_1(t) = x(t-3) + (3-t)$
- (ii)  $y_2(t) = dx(t)/dt$

11.

(iii) 
$$y_1[n] = n x[n] + bx^2[n]$$

(iv) Even  $\{x[n-1]\}$ 


## OR

(b) A Discrete time system is given as y(n) = y<sup>2</sup> (n - 1) = x(n). A bounded input of x(n) = 2δ(n) is applied to the system. Assume that the system is initially relaxed. Check whether system is stable or unstable. (16)

- 12. (a) (i) Compute the Laplace transform of  $x(t) = e^{-b|t|}$  for the cases of b < 0 and b > 0. (10)
  - (ii) State and prove Parseval's theorem of Fourier transform.

#### OR

(b) (i) Determine the Fourier series representation of the half wave rectifier output shown in figure below.



(ii) Write the properties of ROC of laplace transform.

2

51445

· **(8)** 

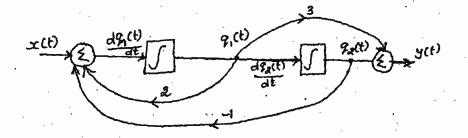
(6)

(8)

- 13. (a) (i)
- Define convolution integral and derive its equation.

(ii) A stable LTI system is characterized by the differential equation

$$\frac{d^2 y(t)}{dt^2} + 4\frac{dy(t)}{dt} + 3y(t) = \frac{dx(t)}{dt} + 2x(t)$$


Find the frequency response and impulse response using Fourier transform. (8)

## OR

(b) (i) Draw direct form, cascade form and parallel form of a system with system function.

$$H(s) = \frac{1}{(s+1)(s+2)}$$
.

(ii) Determine the state variable description corresponding to the block diagram given below.
(8)



| 14.   | (a)         | (i)   | State and prove sampling theorem. $(8)$                                                           |  |
|-------|-------------|-------|---------------------------------------------------------------------------------------------------|--|
|       |             | (ii)  | Using Z-transform, find the convolution of two sequences $x_1(n) = \{1, 2, -1, \dots, n\}$        |  |
|       |             |       | 0, 3} and $x_2$ (n) = {1, 2, -1}. (4)                                                             |  |
| · ·   |             | (iii) | Find the X(Z) if $x(n) = n^2 u(n)$ . (4)                                                          |  |
| 1. j. | •.          |       | OR                                                                                                |  |
|       | <b>(</b> b) | (i)   | Find inverse Z transform of X(Z) = $\frac{Z(Z-1)}{(Z+2)^3 (Z+1)} \operatorname{Roc}  Z  > 2.$ (8) |  |
|       |             | (ii)  | The Nyquist rate of a signal $x(t)$ is $\Omega_0$ . What is the nyquist rate of the               |  |
|       |             |       | following signals ? (8)                                                                           |  |
|       |             |       | (1) $x(t) - x(t-1)$ .                                                                             |  |
|       |             |       | (2) $x(t) \cos \Omega_0 t$                                                                        |  |
| -     |             |       | 3 51445                                                                                           |  |
|       |             |       |                                                                                                   |  |

С ул Парыч

•

(8)

(8)

15. (a)

(i)

Find the system function and the impulse response h(n) for a system described by the following input-output relationship.

$$y(n) = \frac{1}{3} y(n-1) + 3x(n).$$
 (6)

(ii) A linear time-invariant system is characterized by the system function

$$H(z) = \frac{3 - 4 z^{-1}}{1 - 3.5 z^{-1} + 1.5 z^{-2}}.$$

Specify the ROC of H(z) and determine h(n) for the following conditions :

- (1) The system is stable
- (2) The system is causal
- (3) The system is anti-causal.

(10)

24 Mar.

## OR

- (b) (i) Derive the necessary and sufficient condition for BIBO stability of an LSI system.
   (6)
  - (ii) Draw the direct form, cascade form and parallel form block diagrams of the following system function : (10)

$$H(z) = \frac{1}{\left(1 + \frac{1}{2}z^{-1}\right)\left(1 - \frac{1}{4}z^{-1}\right)}.$$

51445

-4